مجموعه مقالات

پنجمین کنفرانس بین‌المللی سالانه

انجمن کامپیوتر ایران

۱۷ - ۱۹ اسفند ماه ۱۳۷۸

دانشکده مهندسی برق و کامپیوتر
دانشگاه شهید بهشتی
شناسایی چهره انسان با تصاویر نیمرخ
با استفاده از ضرایب خودهماستگی و وزیگه‌های هندسی

روضا صفی‌شاک
دانشکده مهندسی کامپیوتر
شماره تلفن: 441 2224
پست الکترونیکی: safasa@ce.aku.ac.ir

چکیده
شناسایی چهره انسان درازه‌داری کاربردهای زیادی در زمینه های تجاری، امنیتی، و قانونی است و در سال‌های اخیر به صورتی مورد توجه قرار گرفته است. در مواردی که می‌توان تصاویر کنترل شده یا از انسان‌های نهفه نبود -به‌ویژه در ایالات متحده- استفاده از تصاویر نیمرخ می‌تواند بسیار مفید باشد. همچنین میزان از تصاویر نیمرخ می‌تواند تصاویر کمربند شناسایی تصاویر نمایشگری استفاده نماید. در این مقاله سیستمی برای شناسایی تصاویر نیمرخ بررسی قرار داده‌ایم. این تصاویر مورد استفاده نتایج در بیانیه‌ها، پژوهش و تحقیقات در تصاویر نیمرخ قرار داده‌ایم. به منظور پایداری حساسیت این موضوع، با استفاده از کیفیت تصاویر آزاد می‌تواند با استفاده از کیفیت تصاویر شناسایی تصاویر نیمرخ 100% سنجیده شود. یک اجرای روش برای مقایسه سنجیدگی و نزدیکی تصاویر نیمرخ 20% بوده است.

واژه‌های کلیدی: شناسایی چهره انسان، تصاویر نیمرخ، وزیگه‌های خودهماستگی، وزیگه‌های هندسی.

1. مقدمه

شناسایی چهره انسان توسط منشی‌یکی از موضوعات مکرر را در علم کامپیوتر، مهندسی شناسی و امنیت ارائه می‌دهد. شناسایی چهره انسان توسط منشی‌یکی به این صورت می‌باشد که سیستمی برای شناسایی تصاویر نیمرخ قرار داده‌ایم. به منظور پایداری حساسیت این موضوع، با استفاده از کیفیت تصاویر آزاد می‌تواند با استفاده از کیفیت تصاویر شناسایی تصاویر نیمرخ 100% سنجیده شود. یک اجرای روش برای مقایسه سنجیدگی و نزدیکی تصاویر نیمرخ 20% بوده است.

1 Segmentation
اما استفاده از تصاویر نیمی، علاوه بر ۳۰۰۰ ردیابی که در دسترس خودم نیست، برای اخذ اطلاعات مفید است، بیارتی غیر قابل استفاده می‌گردد.

میتوان این مدل‌ها را نام برد: داشتن عیدن، داشتن شیء را می‌توان، می‌توانند روابط ریز روانی، شکل‌داده کنند. اگر این روابط را در نظر نگیریم، نمی‌توانم به ترتیب مشخص کنم، که به وسیله کدام مدل‌ها، یک نگاه به مدل‌هایی است که به سیستم‌های داده مشخص، در دسترس هستند.

در این مدل، به وسیله کدام مدل‌ها، یک نگاه به مدل‌هایی است که به سیستم‌های داده مشخص، در دسترس هستند.

به عنوان مثال، مدل‌های داده جمعی، مجموعه داده‌های مصرف و مصرف‌های تست هر روز و اینکه کدام مدل‌ها به سیستم‌های داده مشخص، در دسترس هستند.

دیگر عامل‌های دیگری نیز وجود دارد. مثلاً، مدل‌های داده جمعی، مجموعه داده‌های مصرف و مصرف‌های تست هر روز و اینکه کدام مدل‌ها به سیستم‌های داده مشخص، در دسترس هستند.

مشخصات

مشخصات

شکل ۱: مثال کار بیان‌شناخته اتوماتیک تصاویر نیمی (با استفاده از ویژگی‌ها)

۱- ویژگی‌های اتوماتیک: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۲- ویژگی‌های تحت‌الاثر: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۳- ویژگی‌های استفاده شده: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

روش‌های کاربری برای بیان‌شناخته اتوماتیک تصاویر نیمی را می‌توانیم با دسته‌بندی نمود:

۱- ویژگی‌های اتوماتیک: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۲- ویژگی‌های تحت‌الاثر: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۳- ویژگی‌های استفاده شده: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

روش‌های کاربری برای بیان‌شناخته اتوماتیک تصاویر نیمی را می‌توانیم با دسته‌بندی نمود:

۱- ویژگی‌های اتوماتیک: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۲- ویژگی‌های تحت‌الاثر: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۳- ویژگی‌های استفاده شده: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

روش‌های کاربری برای بیان‌شناخته اتوماتیک تصاویر نیمی را می‌توانیم با دسته‌بندی نمود:

۱- ویژگی‌های اتوماتیک: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۲- ویژگی‌های تحت‌الاثر: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.

۳- ویژگی‌های استفاده شده: در این روش‌ها ابتدا شیوه‌های تنظیم، نمونه و نمونه‌های مشخص می‌شوند.
در این مقاله ملاحظاتی افرادی از رؤی تصور نیمک نه ي را برای بررسی قرار می‌دهیم. تصاویر مورد استفاده تاپ، با ترومپلاژها و اندام‌های مختلف می‌باشند. در مواردی ایز شراطی را مانند وجود ریش، بهبود عینک، به‌گونه‌ای که ریشه خوانش، زمینه و محیط تصویربرداری کنترل شده می‌باشند. در بخش دوم چکینگی تهیه مجموعه تصاویر لازم برای آموزش و آمادگی سیستم ۴ اثر مطلوب را در حالت سوم مراحل به‌دست آورده می‌باشد، عمده در بخش چهارم دو روش شناسایی را بررسی کرده و در بخش پنجم نتیجه‌گیری خواهیم کرد.

۲ تهیه مجموعه تصاویر لازم

بهر منظور بررسی و انتخاب الگوریتم‌های مناسب در مراحل مختلف شناسایی لازم است آن‌ها را بر روز تصاویر آزمایش نماییم. تصاویری که به این منظور به‌کار برده میشوند باید به‌نحوی‌اند که بتوانند نگاه شخص‌های مشغول داشته باشند و به‌هین دلیل اختلاف آنها از مناسبی برخوردار است. انجاییکه مجموعه استفاده‌اند این الگوریتم‌ها وجود در نظر گرفته و مکانیس تهیه همواره آن را تصور بر سری می‌باشد. این کمک‌هایی که به‌طور بازگشایی‌راه را برای تصویر سرویس‌های باعث ایجاد الگوهای کمیک لیست بیش از ۲۴۳ دارای تصویربرداری شده یا باید در نظر گرفته شود. برای ارزیابی مجموعه تصاویر لازم به‌وسیله آزمایشات مختلف، که در زیر ذکر شده، از شکل ۱ تا شکل ۶ تصاویر به‌صورت دوگانه در ماهیت تصویربرداری شد.

شکل ۲ - تصاویر تهیه شده از هر یک

۳ استخراج مرز نیمک

میزان از روشهای تکثیر برای استخراج محدودی نیمک نیمه از طرف نهایی برای این تصاویر استفاده نمود اما چنین مشکل در نوین مرز نیمک در تصاویر وجود دارد که باید اعمالی از دست اگر به چنین مشکل مسیر دارند و وجود باید فاکتور زمینه و صورت این که کار با علمکردهای به دارای مشکل می‌کنند. وجود بافت، برای دسترسی به محیط‌های در ماهیت‌های، نامعلوم می‌باشد. به بافت را تغییر دهد.
3-1 حذف زمینه اضافی تصاویر

همانطور که ذکر شد سعی می‌ماند، جهت بیان دادن و وجود یافتن زمینه و صورت وجود نویز، و آثار ترکیبی که در تصاویر به تهیه کردن وجود دارد. از انجام‌های زمینه اطلاعاتی مفیدی یاری می‌دهد. پس از اینکه تصاویر نیاز به روشن‌سازی محسوسی اضافی آنها در انجام عملکرد مقایسه تولید می‌گردد. به این دلیل برای تصویربرداری است نتایج افزایش در سطح ماده را که انجام گرفته‌است. این افزایش همیشه روش‌ها و راه‌های با کیفیت بیشتری به سطح ماده را می‌گردد.

3-2 تکثیر

برای اینکه بهترین نتایج سر را با بیان زمینه‌های مناسب کنید باید از روشن‌سازی تکثیر استفاده نمایید. روش‌های بسیار متفاوتی برای تکثیر تصاویر وجود دارد که در اینجا بیشتری بیشتری مورد استفاده قرار گرفته‌اند. مشکل عمده در استفاده از این ابزار نیست که کمک‌کننده می‌باشد. در اینجا بیان می‌شود که این مشکل در تصاویر همکاری که از همراهی بین تصاویر به تولید تصاویر با کیفیت بیشتری می‌گردد.

3-3 تکثیر مبتنی بر لبه‌ها

در این دسته از روشن‌سازی تکثیر از ابزارهای حاوی پولیس و غیره استفاده می‌شود. تصاویر موجود به این ترتیب را که در اینجا تولید می‌شود. این ابزار به سطح ماده را که انجام گرفته‌است. این افزایش همیشه روش‌ها و راه‌های با کیفیت بیشتری به سطح ماده را می‌گردد.

3-4 تکثیر مبتنی بر نور

بنابراین این نتایج به‌طور کلی و در نهایت می‌تواند در این دسته از ابزارهای تولید تصاویر بهترین نتایج به سطح ماده را می‌گردد. این ابزار به سطح ماده را که انجام گرفته‌است. این افزایش همیشه روش‌ها و راه‌های با کیفیت بیشتری به سطح ماده را می‌گردد.

3-5 تکثیر مبتنی بر تغییرات

در این دسته از ابزارهای تولید تصاویر بهترین نتایج به سطح ماده را می‌گردد. این ابزار به سطح ماده را که انجام گرفته‌است. این افزایش همیشه روش‌ها و راه‌های با کیفیت بیشتری به سطح ماده را می‌گردد.

3-6 تکثیر مبتنی بر تغییرات

در این دسته از ابزارهای تولید تصاویر بهترین نتایج به سطح ماده را می‌گردد. این ابزار به سطح ماده را که انجام گرفته‌است. این افزایش همیشه روش‌ها و راه‌های با کیفیت بیشتری به سطح ماده را می‌گردد.

3-7 تکثیر مبتنی بر تغییرات

در این دسته از ابزارهای تولید تصاویر بهترین نتایج به سطح ماده را می‌گردد. این ابزار به سطح ماده را که انجام گرفته‌است. این افزایش همیشه روش‌ها و راه‌های با کیفیت بیشتری به سطح ماده را می‌گردد.
مشوره نمونه را نشان می‌دهد. در شکل 5 (الف) میانگین گراف را با سه ناحیه را کامل‌اً در هم هم‌شکل نمود. حال اگر در شکل 5 (ب) قله های دوم و سوم روز هم قرار گرفت. آن‌گونه این انتخاب به دوی نموده می‌باشد که قله های دوم و سوم در ان فاصله گذشته، نخواهد چشیده بود. با انتخاب نموده‌ای میانگین انتظار پاسخ‌های که در شکل 5 (ب) یک نمونه از نمودی‌های نامی‌بیانده (ب) یک نمونه از نمودی‌های نامی‌بیانده برای اعمال میانگین هسته‌ها که در آن ناحیه و سوم روز هم انتظار آن این‌طور هستند.

(p-Tile) روش درصد دنی الیت هسته‌ها

در این روش قرض میکرات ثبت می‌شود. چنین روشی تا متناسب با این ناحیه را سه ناحیه را با سه ناحیه را کامل‌اً در هم هم‌شکل نمود. بالاتر از این ناحیه را سه ناحیه را کامل‌اً در هم هم‌شکل نمود. بالاتر از این ناحیه را سه ناحیه را کامل‌اً در هم هم‌شکل نمود.

(Sid-Ahmed) روش درصد دنی الیت هسته‌ها

در این روش قرض میکرات ثبت می‌شود. چنین روشی تا متناسب با این ناحیه را سه ناحیه را کامل‌اً در هم هم‌شکل نمود. بالاتر از این ناحیه را سه ناحیه را کامل‌اً در هم هم‌شکل نمود.
3-3 منحنی نیم‌خیما از مرز صورت

برای یا پرا کردن مرز منحنی نیم‌خیما در تصویر آستین ای شده می‌توان از روش یگیری پراومونت استفاده کرد. اما با اعمال این روش مشاهده شد که این روش در تناها بالای آنتن نیم‌خیما دچار اشکال می‌گردد. امکانی نیز وجود مناطق مختلفشکل‌شده در اندازه‌های مختلف در این تناها کامل و در تناها کیفیت تصویر این روش محقق که پس از یافتن یک نقطه از مرز روي یک سطح از تصویرگر، دیگر به سطح‌های قبل پرگرده و روی همان سطح یا سطح بعد نیست، بهترین نتیجه‌گیریات این روش در شکل (ب) ارائه می‌شود.

شکل 3- استخراج مرز نیم‌خیما (الف) تصویر پرده شده (ب) تصویر آستین آی شده به روی ماکزیموم و ریتانس (ب) منحنی نیم‌خیما حاصل.

4 شناسایی

4-1 نیم‌خیما خود‌هسته‌گی

این ویژگی با محسوس‌کردن نیم‌خیما تصویر با خودش محاسبه می‌شود و نسبت به انگل، دوران، و اندازه‌شدن در تصویر مستقل هستند.

\[A = \sum_{x} \sum_{y} f(x, y) \]

\[G(\alpha \sqrt{\cos \theta}, \alpha \sqrt{\sin \theta}) = \frac{1}{A} \sum_{x} \sum_{y} f(x, y) (x + \alpha \sqrt{\cos \theta}, y + \alpha \sqrt{\sin \theta}) \]

با استفاده از رابطه (3) منحنی پرا یا یوژری مانند 0 و مقادیر جابجایی مختلف \(\alpha \) برای اندازه‌گیری G را استفاده می‌کنیم. نیز به‌صورت مشابه، برای یک نقطه در دوای مختلف (که به نیم‌خیما مربوط می‌گردد) که به یک نقطه جابجایی \(\alpha \) اضافه می‌شود، نیز به‌صورت مشابه، برای یک نقطه جابجایی \(\alpha \) اضافه می‌شود. با استفاده از این روش، نیز به‌صورت مشابه، برای یک نقطه جابجایی \(\alpha \) اضافه می‌شود.

4-2 گرافیکی به‌صورت قلمی

اتجاه نشان می‌دهد که در هر یک از نقاط سطح به‌طور گسترده‌ای از دو روش دگر یکدیگر می‌گذرد.

چوپاب می‌باشد.

برای بررسی این تغییرات مختلف تصویر نیم‌خیما ورودی بر روی انریختن دسته‌های صورت، احتمال آنتن‌های کاری با تغییرات (۴) تغییرات دسته‌های دیگر نیز می‌باشد. پاسخ‌های تغییرات در تصویر این دسته‌های متفاوت و تصویر دسته‌های مختلف اندازه‌گیری می‌شود. در هر یک از دسته‌های متفاوت، در هر یک از دسته‌های مختلف اندازه‌گیری می‌شود. در هر یک از دسته‌های متفاوت، در هر یک از دسته‌های مختلف اندازه‌گیری می‌شود. در هر یک از دسته‌های متفاوت، در هر یک از دسته‌های مختلف اندازه‌گیری می‌شود.
با توجه به جدول فوق، میتوان نتایجی را از نظر نور و اندازه تصویر و نانو و یا گرد و شو که به صورت تیپیست در نمود.

1- این جدول نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

2- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

3- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

4- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

5- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

6- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

7- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

8- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

9- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

10- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

11- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

12- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

13- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

14- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

15- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

16- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

17- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

18- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

19- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

20- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

21- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

22- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

23- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

24- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

25- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

26- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

27- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

28- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

29- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

30- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

31- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

32- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

33- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

34- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

35- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

36- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

37- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

38- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

39- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

40- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

41- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

42- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

43- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

44- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

45- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

46- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

47- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

48- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.

49- نتایج نشان می‌دهد که با افزایش اندازه تصویر، نانو و یا گرد و شو کاهش می‌یابد.

50- در این جدول، نهایت بهبود اندازه تصویر با نانو و یا گرد و شو کاهش می‌یابد.
شکل 7 نمونه ای از نقاط شاخه‌ای

به شکلی که شاخه‌ای استفاده از شاخه‌ای باشد آمده، یک بردار ویژگی 16 بندی به یک پایه بسته می‌شود و از آنجاییکه این بردار ویژگی را یک توصیف تصاویری با از ایجاد های مختلف کاربردی برابر برابر میکند. پایه این پایه ای نیازمند نهایی به مقدار و شاخص‌های مورد استفاده که در داده‌های تصادفی بر می‌رسد.

جدول 6 بردار ویژگی 16 بندی به‌همراه برای برای ویژگی‌های هندسی

<table>
<thead>
<tr>
<th>خصوصیت</th>
<th>درصد شاخه‌ای</th>
<th>درصد شاخه‌ای متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>برای تصویر اریتمیزی</td>
<td>4%</td>
<td>0.2%</td>
<td>6%</td>
<td>0.4%</td>
<td>8%</td>
<td>0.5%</td>
<td>10%</td>
<td>0.6%</td>
</tr>
<tr>
<td>برای تصویر موزیک</td>
<td>6%</td>
<td>0.3%</td>
<td>8%</td>
<td>0.4%</td>
<td>10%</td>
<td>0.5%</td>
<td>12%</td>
<td>0.6%</td>
</tr>
<tr>
<td>برای تصویر فیلم</td>
<td>8%</td>
<td>0.4%</td>
<td>10%</td>
<td>0.5%</td>
<td>12%</td>
<td>0.6%</td>
<td>14%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

روش

با بررسی نتایج فوق و نتایج پیش‌بینی بخش قبل نکات زیر حاشیه می‌شود:

1. برای تصویر ویژگی‌های هندسی نیازمند روش‌های شرکای خودمهمکاری در صورت حاصل کننده تغییرات تصاویری یک فرد نخ نشان شاخص مطمئن بسیار بالایی از خود نشان می‌دهد.
<table>
<thead>
<tr>
<th>جدول 6</th>
<th>بررسی تغییرات اندام سر در تصویری در نواصاعی پرش و ویژگی‌های هندسی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>درصد شناسایی کل</td>
</tr>
<tr>
<td>روش</td>
<td></td>
</tr>
<tr>
<td>آموزش با تصور ۲ (نحو متوسط)</td>
<td>۷۴/۴۳</td>
</tr>
<tr>
<td>آموزش با تصور ۳ (نحو متوسط)</td>
<td>۷۵/۷۵</td>
</tr>
</tbody>
</table>

بهترین نتایج حاصل از دو روش مورد به دو میانه برج تغییرات شناسایی ۲۰٪ صحت، با تغییر در اندازه تصویر شناسایی ۴۰٪ صحت، با افزودن عکس شناسایی ۲۴٪ صحت، با افزودن عکس شناسایی ۲۰٪ صحت، با افزودن عکس شناسایی ۱۸٪ صحت.

نتیجه گیری

در این مطالعه ابتدا از سه ترکیب نوار نیبیتاهان و اندازه‌های مختلف با آن و نقش وریش و رشد ملایم و نیبیتاهان برای استفاده از این تغییرات روش مورد بررسی و تغییرات نواصاعی پرش در شناسایی بهینه‌تر روش تغییرات شناسایی ۴۰٪ صحت، با تغییر در اندازه تصویر شناسایی ۴۰٪ صحت، با افزودن عکس شناسایی ۲۴٪ صحت، با افزودن عکس شناسایی ۲۰٪ صحت، با افزودن عکس شناسایی ۱۸٪ صحت.

در این مطالعه ابتدا از سه ترکیب نوار نیبیتاهان و اندازه‌های مختلف با آن و نقش وریش و رشد ملایم و نیبیتاهان برای استفاده از این تغییرات روش مورد بررسی و تغییرات نواصاعی پرش در شناسایی بهینه‌تر روش تغییرات شناسایی ۴۰٪ صحت، با تغییر در اندازه تصویر شناسایی ۴۰٪ صحت، با افزودن عکس شناسایی ۲۴٪ صحت، با افزودن عکس شناسایی ۲۰٪ صحت، با افزودن عکس شناسایی ۱۸٪ صحت.

مراجع

